Mechanism of filament formation on ssDNA by RecA protein

نویسندگان

  • Tsutomu Mikawa
  • Takehiko Shibata
چکیده

RecA protein (RecA) forms a nucleoprotein filament composed of a helical protein array that binds to singlestranded DNA (ssDNA), which in its active form is then able to initiate various reactions. A series of studies to date suggest the following roles of the N-terminal domain on filament formation by RecA. 1) The N-terminal domain of RecA is the functional region for protein-protein interactions between contiguous RecA monomers. 2) The N-terminal domain regulates filament formation kinetically through its folding transition. 3) The N-terminal domain is the trigger for filament formation, which searches for ssDNA regions on the DNA and initiates filament formation on ssDNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Light scattering studies of the recA protein of Escherichia coli: relationship between free recA filaments and the recA X ssDNA complex.

Light scattering has been used to monitor and distinguish between two types of aggregation reactions observed with the recA protein of Escherichia coli. These are (1) the cooperative binding of recA protein to ssDNA in a pathway leading to DNA strand exchange and (2) the formation of free filaments by recA protein in the absence of DNA. Free filament formation requires Mg2+, is very sensitive t...

متن کامل

Dynamics of RecA filaments on single-stranded DNA

RecA, the key protein in homologous recombination, performs its actions as a helical filament on single-stranded DNA (ssDNA). ATP hydrolysis makes the RecA-ssDNA filament dynamic and is essential for successful recombination. RecA has been studied extensively by single-molecule techniques on double-stranded DNA (dsDNA). Here we directly probe the structure and kinetics of RecA interaction with ...

متن کامل

A novel property of the RecA nucleoprotein filament: activation of double- stranded DNA for strand exchange in trans.

RecA protein catalyzes DNA strand exchange, a basic step of homologous recombination. Upon binding to single-stranded DNA (ssDNA), RecA protein forms a helical nucleoprotein filament. Normally, this nucleoprotein filament binds double-stranded DNA (dsDNA) and promotes exchange of base pairs between this dsDNA and the homologous ssDNA that is contained within this filament. Here, we demonstrate ...

متن کامل

Mechanical force antagonizes the inhibitory effects of RecX on RecA filament formation in Mycobacterium tuberculosis

Efficient bacterial recombinational DNA repair involves rapid cycles of RecA filament assembly and disassembly. The RecX protein plays a crucial inhibitory role in RecA filament formation and stability. As the broken ends of DNA are tethered during homologous search, RecA filaments assembled at the ends are likely subject to force. In this work, we investigated the interplay between RecX and fo...

متن کامل

Force and ATP hydrolysis dependent regulation of RecA nucleoprotein filament by single-stranded DNA binding protein

In Escherichia coli, the filament of RecA formed on single-stranded DNA (ssDNA) is essential for recombinational DNA repair. Although ssDNA-binding protein (SSB) plays a complicated role in RecA reactions in vivo, much of our understanding of the mechanism is based on RecA binding directly to ssDNA. Here we investigate the role of SSB in the regulation of RecA polymerization on ssDNA, based on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002